| Name |
|------|
|------|

| Date / | / / | / |
|--------|-----|---|
|        | /   |   |

## Day 2 Practice: Parallel and Perpendicular Lines

## Write the equation of each line described. Your final answer should be in slope-intercept form.

| 1. | The line goes through the point (3,2) and is parallel to the line $y = 3x - 1$              | 2. | The line goes through the point (3,2) and is perpendicular to the line $y = 3x - 1$                 |  |
|----|---------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------|--|
|    | Equation:                                                                                   |    | Equation:                                                                                           |  |
| 3. | The line goes<br>through the point<br>(1, -2) and is<br>parallel to the<br>line y-axis      | 4. | The line goes<br>through the<br>point (1, -2) and<br>is perpendicular<br>to the y- axis.            |  |
|    | Equation:                                                                                   |    | Equation:                                                                                           |  |
| 5. | The line goes through the point (-3, -3) and is parallel to the line $y = \frac{4}{3}x - 1$ | 6. | The line goes through the point (-3, -3) and<br>is perpendicular to the line $y = \frac{4}{3}x - 1$ |  |
|    | Equation:                                                                                   |    | Equation:                                                                                           |  |
| 7. | Which equation shows a line that is parallel to $y = -2x-4$ ?                               | 8. | Which equation shows a line that is perpendicular to $y = -2x - 4$ ?                                |  |
|    | A. $y = \frac{1}{2}x + 5$                                                                   |    | A. $y = \frac{1}{2}x + 5$                                                                           |  |
|    | B. $y = -2x + 5$                                                                            |    | B. $y = -2x + 5$                                                                                    |  |
|    | C. $y = 5x + 1$                                                                             |    | C. $y = 5x + 1$                                                                                     |  |

|     | D. $y = 2x + 5$                                                                                                                                  |     | D. $y = 2x + 5$                                                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.  | Which equation shows a line that is parallel to $y = -\frac{1}{3}x - 2$ ?                                                                        | 10. | Which equation shows a line that is perpendicular to $y = -\frac{1}{3}x - 2$ ?                                                                   |
|     | A. $y = \frac{1}{3}x - \frac{4}{3}$<br>B. $y = -\frac{4}{3}x - \frac{1}{3}$<br>C. $y = -\frac{1}{3}x - \frac{4}{3}$<br>D. $y = 3x - \frac{1}{3}$ |     | A. $y = \frac{1}{3}x - \frac{4}{3}$<br>B. $y = -\frac{4}{3}x - \frac{1}{3}$<br>C. $y = -\frac{1}{3}x - \frac{4}{3}$<br>D. $y = 3x - \frac{1}{3}$ |
| 11. | Which equation shows a line that is parallel to $y = \frac{4}{7}x - 1$ , and goes through the point (-4, 5)                                      | 12. | Which equation shows a line that is perpendicular to $y = \frac{4}{7}x - 1$ , and goes through the point (-4, 5)                                 |
|     | A. $y + 4 = \frac{4}{7}(x - 4)$<br>B. $y - 5 = -\frac{7}{4}(x + 4)$<br>C. $y - 5 = \frac{4}{7}(x + 4)$<br>D. $y + 4 = -\frac{7}{4}(x - 5)$       |     | A. $y+4 = \frac{4}{7}(x-4)$<br>B. $y-5 = -\frac{7}{4}(x+4)$<br>C. $y-5 = \frac{4}{7}(x+4)$<br>D. $y+4 = -\frac{7}{4}(x-5)$                       |
| 13. | Which equation shows a line that is parallel to $y = 5x + 12$ , and goes through the point (6,-2)                                                | 14. | Which equation shows a line that is perpendicular to $y = 5x + 12$ , and goes through the point (6,-2)                                           |
|     | A. $y+2 = 5(x-6)$<br>B. $y-2 = -5(x-6)$<br>C. $y-6 = 5(x-6)$<br>D. $y+2 = -\frac{1}{5}(x-6)$                                                     |     | A. $y+2 = 5(x-6)$<br>B. $y-2 = -5(x-6)$<br>C. $y-6 = 5(x-6)$<br>D. $y+2 = -\frac{1}{5}(x-6)$                                                     |

Classify the following equation as parallel, perpendicular, or neither.

| 15. | y = 4x + 14 $y = -4x + 14$     | 16. | $y = \frac{3}{2}x - 1$ | $y = -\frac{2}{3}x + 5$ |
|-----|--------------------------------|-----|------------------------|-------------------------|
|     | Parallel Perpendicular Neither |     | Parallel               | Perpendicular Neither   |
| 17. | 3x - 4y = -11 $4x + 3y = -15$  | 18. | 7x + 4y = 16           | 7x + y = -30            |

