\qquad Date \qquad
Day 2 Practice: Parallel and Perpendicular Lines

Write the equation of each line described. Your final answer should be in slope-intercept form.

1.	The line goes through the point $(3,2)$ and is parallel to the line $y=3 x-1$ Equation: \qquad	2.	The line goes through the point $(3,2)$ and is perpendicular to the line $y=3 x-1$ Equation:
3.	The line goes through the point $(1,-2)$ and is parallel to the line y-axis Equation: \qquad	4.	The line goes through the point (1, -2) and is perpendicular to the y - axis. Equation: \qquad
5.	The line goes through the point $(-3,-3)$ and is parallel to the line $y=\frac{4}{3} x-1$ Equation:	6.	The line goes through the point $(-3,-3)$ and is perpendicular to the line $y=\frac{4}{3} x-1$ Equation:
7.	Which equation shows a line that is parallel to $y=-2 x-4$? A. $y=\frac{1}{2} x+5$ B. $y=-2 x+5$ C. $y=5 x+1$	8.	Which equation shows a line that is perpendicular to $y=-2 x-4$? A. $y=\frac{1}{2} x+5$ B. $y=-2 x+5$ C. $y=5 x+1$

	D. $y=2 x+5$		D. $y=2 x+5$
9.	Which equation shows a line that is parallel to $y=-\frac{1}{3} x-2$? A. $y=\frac{1}{3} x-\frac{4}{3}$ B. $y=-\frac{4}{3} x-\frac{1}{3}$ C. $y=-\frac{1}{3} x-\frac{4}{3}$ D. $y=3 x-\frac{1}{3}$	10.	Which equation shows a line that is perpendicular to $y=-\frac{1}{3} x-2$? A. $y=\frac{1}{3} x-\frac{4}{3}$ B. $y=-\frac{4}{3} x-\frac{1}{3}$ C. $y=-\frac{1}{3} x-\frac{4}{3}$ D. $y=3 x-\frac{1}{3}$
11.	Which equation shows a line that is parallel to $y=\frac{4}{7} x-1$, and goes through the point $(-4,5)$ A. $y+4=\frac{4}{7}(x-4)$ B. $y-5=-\frac{7}{4}(x+4)$ C. $y-5=\frac{4}{7}(x+4)$ D. $y+4=-\frac{7}{4}(x-5)$	12.	Which equation shows a line that is perpendicular to $y=\frac{4}{7} x-1$, and goes through the point (-4, 5) A. $y+4=\frac{4}{7}(x-4)$ B. $y-5=-\frac{7}{4}(x+4)$ C. $y-5=\frac{4}{7}(x+4)$ D. $y+4=-\frac{7}{4}(x-5)$
13.	Which equation shows a line that is parallel to $y=5 x+12$, and goes through the point ($6,-2$) A. $y+2=5(x-6)$ B. $y-2=-5(x-6)$ C. $y-6=5(x-6)$ D. $y+2=-\frac{1}{5}(x-6)$	14.	Which equation shows a line that is perpendicular to $y=5 x+12$, and goes through the point ($6,-2$) A. $y+2=5(x-6)$ B. $y-2=-5(x-6)$ C. $y-6=5(x-6)$ D. $y+2=-\frac{1}{5}(x-6)$

Classify the following equation as parallel, perpendicular, or neither.

